Wilcox Oil Company Superfund Site
Bristow, Creek County, Oklahoma

Ground Water Collection Field Form

Page:	of	
Date:		

6	11	7
)/	/	D
	5/	1/2

Well ID:	LPA-	Sw-01	Sample ID	LPA-C	Sw-01	Sample Time:	1400				01.1120
Casing diameter		1"			Well location:	LPA				Weather: (/	ear 90
Screened inter	val(s):		-/1/		Sampling pers		G IM				
Total depth:			4',		Sampling meth	0	,				
Initial depth to	water (w/o pump	o):	/		Water level inc	licator:					
Final depth to v	water (w/o pump)):	/		Water quality r	neter:	YSI				
Measuring poir	nt: North side o	of casing			Pump depth se	etting: 13			Pump type/mod	lel:	
	Δ < 1° C	Δ < 3%	Δ <10%	Δ <10%	Δ < 0.1 pH	Δ < 10 mV	∆ < 0.3 ft	< 1L/min	Δ < 10 NTU		Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1355	22.23	0.607	47.9	3.68	5.08	308.6			Oh	/	
						, , , , , , , , , , , , , , , , , , ,					
			, a								
					J			ű.			
					*	The					
Note: Parameter Stabil	ization Limits:						AVANCED SOLVE	cle those colle	ected and indic	ate the number	of containers)

svocs

Hexavalent Chromium

Aroclors

Recorded By:_

Percent difference formula =

Ex: Readings 12, 16, 15, 13

(3 consecutive readings) for percent difference type parameters

((12-16)/12)*100 = 33% ((16-15)/16)*100 = 6% ((15-13)/15)*100 = 13% In example, stabilization has not occurred.

ABS[((first reading - second reading)/first reading) x 100]

((12-16)/12)*100 = 33% ((16-15)/16)*100 = 6% ((15-13)/15)*100 = 13% In example, stabilization has not occurred.

Recorded By:_

Ground Water Collection Field Form

Page: Date:	of
Date.	8/11/
	0114/20

Well ID	: LPA	-6v-02	Sample ID	: <u>LPA-C</u>	-w-02	Sample Time:	820				
Casing diame		111			Well location:	LEA				Weather:	73 Clear
Screened inte		5-15			Sampling person		- 09				
Total depth:		15			Sampling meth	(2)					
	water (w/o pum	p): /			Water level ind						
	water (w/o pump		/		Water quality n		YSI				
Measuring poi	nt: North side	of casing			Pump depth se	0.1	1		Pump type/mod	del:	
	Δ < 1° C	Δ<3%	Δ <10%	Δ <10%	Δ < 0.1 pH	Δ < 10 mV	Δ < 0.3 ft	< 1L/min	Δ < 10 NTU		Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
815	19.83	0.542	33.3	2.81	4.73	1783			OL	/	
,						,					
											, us
											· · · · · · · · · · · · · · · · · · ·
					-						
Note:							Analyses: (cir	ole those colle	cted and indic	ate the number	r of containers)
Parameter Stab							accommon 2	Metals	oleu anu mulo	Pesticides	or containers)
(3 consecutive r Percent differen		ent difference type p	parameters				Contract Con	Hexavalent C	hromium	Aroclors	
ABS[((first readi Ex: Readings 1	ng - second readir 2, 16, 15, 13	ng)/first reading) x	100]								

licox Oil Com	pany Superfun County, Oklaho	ama									Page: of Date:
	W	1A-GW-1	31	WPA-G	w-01 G	round Wate	r Collection F	Field Form			8/13/
Well ID	Ew-	21	Sample ID	: WPA-G	w-01-D	Sample Time	810	•3			
Casing diame		1"			Well location:	WPA				Weather:	lear 71°
Screened inte	rval(s):	15-2	9		Sampling pers	onnel: WG	- ÎM				
Total depth:		25			Sampling meth	hod: Peri					
Initial depth to	water (w/o pum	p): 24			Water level inc	dicator:					
Final depth to	water (w/o pum	ρ):			Water quality r		YSI				
Measuring poi	nt: North side	of casing			Pump depth se	etting: 2 4			Pump type/mod	del:	
	Δ < 1° C	Δ<3%	Δ <10%	Δ <10%	Δ < 0.1 pH	Δ < 10 mV	Δ < 0.3 ft	< 1L/min	Δ < 10 NTU		Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
0809	19.95	0.755	52.7	4.77	6.27	121.2			103.5		
	1										
			6								
											10
											·
Note:								cle those colle	cted and indic	ate the number	r of containers)
Parameter Stabi	lization Limits:	at difference to an a					VOCs	Metals		Pesticides	

svocs

Hexavalent Chromium

Aroclors

Wilcox Oil Company Superfund Site

(3 consecutive readings) for percent difference type parameters

ABS[((first reading - second reading)/first reading) x 100]

Ex: Readings 12, 16, 15, 13

((12-16)/12)*100 = 33% ((16-15)/16)*100 = 6%

((15-13)/15)*100 = 13% In example, stabilization has not occurred.

Percent difference formula =

Recorded By:_

Wilcox Oil Company Superfund Site Bristow, Creek County, Oklahoma

WPA-Gw-02 Ground Water Collection Field Form

raye	01
Date:	
ce 1	/
41	11/22
Ul	11/20

	101			201	Carol		1				01.1-0
Well ID:	WEA.	-6w-0	Z Sample ID:			Sample Time:	1415				
Casing diameter		/			Well location:	WEA				Weather:	nes C 90°
Screened inter	val(s):	20-24			Sampling person		16.7M				
Total depth:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	24			Sampling meth	od:	Hudroprob	e //ty	dropunce	7	
Initial depth to	water (w/o pump	o): /			Water level ind	licator:	1/1	-	(
Final depth to v	vater (w/o pump):			Water quality n	neter:	YSI				
Measuring point: North side of casing					Pump depth se	etting:	24		Pump type/mod	lel:	
	Δ < 1° C	Δ < 3%	Δ <10%	Δ <10%	Δ < 0.1 pH	∆ < 10 mV	Δ < 0.3 ft	< 1L/min	Δ < 10 NTU		Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1400	26.74	0.674	57.3	4.28	4.51	281.1			00		Comt low-flow
1/2			,								Not enough Lecherge
											7
								8			
											14
											16

Note:

Recorded By:_

Parameter Stabilization Limits: (3 consecutive readings) for percent difference type parameters Percent difference formula = ABS[((first reading - second reading)/first reading) x 100] Ex: Readings 12, 16, 15, 13

((12-16)/12)*100 = 33%	((16-15)/16)*100 = 6%
((15-13)/15)*100 = 13%	In example, stabilization has not occurred

VOCs Metals Pesticides

Analyses: (circle those collected and indicate the number of containers)

svocs Hexavalent Chromium Aroclors

Wilcox Oil Company Superfund Site
Bristow, Creek County, Oklahoma

Page:	of
Date:	
n	1- 1-

					G	round Water	r Collection F	Field Form			8/13/20
Well ID:	WPA-C	Sw-04	Sample ID:	WEA-	Gw-04	Sample Time:	1335	ř.			V117 30
Casing diameter		1"			Well location:	W	PA			Weather: (lea- 90"
Screened inter	val(s):	2-12			Sampling person	onnel:	WG JM				
Total depth:		12			Sampling meth	od:	Perí				
Initial depth to	water (w/o pump	o): /			Water level ind	icator:					
Final depth to v	water (w/o pump	o): /			Water quality n	neter:	YSI				
Measuring poir	nt: North side o	of casing			Pump depth se	etting: []			Pump type/mod	del:	
	Δ < 1° C	Δ < 3%	Δ <10%	Δ <10%	Δ < 0.1 pH	Δ < 10 mV	Δ < 0.3 ft	< 1L/min	Δ ≺ 10 NTU		Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1330	23.16	17.271	831	7.08	5.60	197.1			MR		
, , , , ,				/					U!		
											7

Parameter Stabilization Limits:

(3 consecutive readings) for percent difference type parameters Percent difference formula =

ABS[((first reading - second reading)/first reading) x 100]

Ex: Readings 12, 16, 15, 13
((12-16)/12)*100 = 33% ((16-15)/16)*100 = 6%
((15-13)/15)*100 = 13% In example, stabilization has not occurred.

I /	\nalisana.	/airala A	h a a a	alla aka al		i	41			containers	
•	Maivses	(Circle i	nose c	ollected	and	indicate	THE	niimnei	OT	containers	

VOCs Metals Pesticides

svocs Hexavalent Chromium Aroclors

Recorded By:_

Ground Water Collection Field Form

21
17/00
12/21

Well ID:	WPA-	Gu-06	Sample ID:	WPA-	Gu-06	Sample Time:	0910				
Casing diamet		-1''			Well location:	onnel: W	4			Weather:	Clear 750
Screened inter	val(s):	0-9			Sampling person	onnel: W	5- IM				
Total depth:		9			Sampling meth	od: Ceri					
Initial depth to	water (w/o pump	o): /			Water level ind	icator:	/				
Final depth to	water (w/o pump): /			Water quality m	neter:	YSI				
Measuring poir	nt: North side o	of casing			Pump depth se	tting: 8.5			Pump type/mod	iei: Pega	1515
	Δ < 1° C	Δ < 3%	Δ <10%	Δ <10%	Δ < 0.1 pH	Δ < 10 mV	Δ < 0.3 ft	< 1L/min	Δ < 10 NTU	7	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
											Cant Get Parameter
											Too Turbia/ to much
											Even Pand 1st
	V										Tree (royac)
				4							
				I							
Note:							Analyses: (circ	le those colle	cted and indica	ate the numbe	er of containers)

Parameter Stabilization Limits:

(3 consecutive readings) for percent difference type parameters

Percent difference formula =

ABS[((first reading - second reading)/first reading) x 100]

Recorded By:

Ex: Readings 12, 16, 15, 13 ((12-16)/12)*100 = 33% ((16-15)/16)*100 = 6% ((15-13)/15)*100 = 13% In example, stabilization has not occurred.

VOCs Metals Pesticides

svocs Hexavalent Chromium Aroclors

Ground Water Collection Field Form

Page:	of
Date:	
11	7131
8/	15/20

Well ID	· WPA	-Gw-07	Sample ID	: WPA-6	w.07	Sample Time:	1040	d			
Casing diame	ter/type:	111			Well location:	WEA				Weather: /	Clear 780
Screened inte		15-2	5		Sampling pers	onnel: 🌙	G JM				
Total depth:		25			Sampling meth	22					
Initial depth to	water (w/o pum	p):			Water level inc	dicator:					
Final depth to	water (w/o pump	o):	/		Water quality r		YSI				
Measuring poi	nt: North side o	of casing			Pump depth se	etting: 24			Pump type/mo	del:	
	Δ < 1° C	Δ < 3%	Δ <10%	Δ <10%	Δ < 0.1 pH	∆ < 10 mV	Δ < 0.3 ft	< 1L/min	Δ < 10 NTU		Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1035	20.45	0.711	44.8	3.27	6.04	150.9			06		Very strong Hydrol
,											ndin
									-		
Note: Parameter Stab (3 consecutive r	eadings) for perce	nt difference type p	arameters				VOCs	cle those colle Metals Hexavalent C		ate the number Pesticides	er of containers)

ABS[((first reading - second reading)/first reading) x 100]

Ex: Readings 12, 16, 15, 13

((12-16)/12)*100 = 33% ((16-15)/16)*100 = 6%

((15-13)/15)*100 = 13% In example, stabilization has not occurred.

Recorded By:_

Wilcox Oil Company Superfund Site
Bristow, Creek County, Oklahoma

WPA - Gw-Od Ground Water Collection Field Form

ge:	of
te:	
0	77127
	1127.

Well ID	<u> </u>	Gw-09	Sample ID:	WPA-G	~-04-l	Sample Time:	0940				
Casing diamet		1"			Well location:	Wes				Weather:	Clear 75°
Screened inter	val(s):	5-1	5		Sampling person						
Total depth:		15	- Car		Sampling meth	od: Per					
Initial depth to	water (w/o pump	0):			Water level ind	licator:	8°				
Final depth to	water (w/o pump	o):	/_		Water quality n	neter:	YSI				
Measuring poin	nt: North side o				Pump depth se				Pump type/mod	iel:	
	Δ < 1° C	Δ < 3%	Δ <10%	Δ <10%	Δ < 0.1 pH	Δ < 10 mV	Δ < 0.3 ft	< 1L/min	Δ < 10 NTU		Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
0935	22.46	0.314	22.8	1.98	6.80	133.5			Bh		
		, ,				.,.,					
											-
Notes						Ÿ.	A = - / - !	\$1 may	V V VV V		

Parameter Stabilization Limits:

(3 consecutive readings) for percent difference type parameters

Percent difference formula =

ABS[((first reading - second reading)/first reading) x 100]

Ex: Readings 12, 16, 15, 13

((12-16)/12)*100 = 33% ((16-15)/16)*100 = 6%

((15-13)/15)*100 = 13% In example, stabilization has not occurred.

	1011-
Recorded By:	700

Analyses: (circle those collected and indicate the number of containers)

VOCs

Metals

Pesticides

svocs

Hexavalent Chromium

Aroclors